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This report presents the conclusions reached in Part II in

the course of investigating the "Astrodynamics of Lunar Satel-

lites" under Contract NAS 8-5015. The work was done by the Grum-

man Research Department, Bethpage, N.Y. under the auspices of

NASA's Marshall Space Flight Center, Aero-Astrodynamics Labora-

tory, Flight Evaluation Branch.

The purpose of this part of the contract was to study the

stability of lunar satellites perturbed by the moon's triaxial

potential and by the attractions of the earth, sun, and planets.

An approximate analytic solution for the motion of a lunar satel-

lite was derived and extensive numerical studies were performed.

This report contains the conclusions and data from these

studies. The body of the report includes the main conclusions

and a portion of the data; and the appendices contain the deriva-

tions, equations, and additional data. /_w_-_J
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L%ST OF SYMBOLS

classical elements of the lunar satellite orbit with

respect to inertial reference

.th
j direction cosine of satellite radius vector

.th
length of j principal axis of lunar ellipsoid;

b 1 > b 2 > b 3 ) 0

2 2 2

b I + b 2 + b 3

_/kma(l - e2_)

h cos i

gravitational constant of the earth

gravitational constant of the sun

gravitational constant of the moon

disturbing function

approximation to R

average of R over a satellite revolution

< R > + 8Eh z

small eccentricity approximation to R
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rE

r S

S 1

S2

aI

a 2

satellite radius

earth-moon distance (assumed constant)

sun-moon distance (assumed constant)

angle between earth-moon line and satellite radius

vector

angle between sun-moon line and satellite radius vector

x/'--k- smh

h I

J km/a 3 T = nT I

a canonical set of orbital

elements with potential

function R

T

5 E

5 S

A

_E

J

- SEt , angle of line of nodes of satellite orbit

with respect to the earth-moon line

angular velocity of the earth about the moon

angular velocity of the sun about the moon

constant of the moon potential

SEt , angle of earth-moon line in inertial reference

_S

iE

5st, angle of sun-moon line in inertial reference

angle of inclination measured from the earth equatorial

plane
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INTRODUCTION

The second part of this contract examines the stability of

lunar satellites. Two avenues of approach have been used. The

first is based on a technique in nonlinear differential equations

known as the Kryloff-Bogoliuboff averaging process. Using this

technique on near circular lunar orbits makes it possible to de-

rive an approximate solution to the equations of motion which

describe the long term behavior of these orbits. The second

approach is purely a numerical one based on a high precision var-

iation of parameters integration routine. With this, a survey

has been made of the perturbations of lunar satellite orbits with

many different initial conditions and at different times during

the 18 year lunar cycle.

The first section of this second part of the final report

describes the Kryloff-Bogoliuboff averaging process and the prin-

cipal results obtained from it for lunar satellite orbits. Also

included are comparisons between numerical and approximate ana-

lytic solutions. The second section describes the numerical study

and includes graphs and tables of the principal results. The

appendices contain the actual derivation of the approximate solu-

tion, the equations upon which the integration routine is based,

and a thorough catalog of the numerical results.

i

Research Dept.

RE-170

November 1963



: ]

77

THE APpROX%MA_E SOLUTION

tr_

Background and Description of Derivation

The Kryloff-Bogoliuboff averaging process is a powerful tool

for analyzing the long term behavior of some mechanical systems,

and it is based upon the following observations. Let there be

given a system of differential equations of the form

dx

dt
- _ f(x, t) , (i)

L

r_

where _ is small, and f is periodic in t with period P.

Expanding f in a Fourier series in t allows the equation to

be written as

CO

dx (x) + _ y,dt = _ fo

n=l

_2n_

fn (x)co_-_- t)

If _ is sufficiently small, the quantities x will change

slowly, and the integral

n=l
O

f = 0
n

(2)

(3)

will contribute very little to x over any one cycle. Therefore,

to examine the long term behavior, or secular changes, in x the

system of equations

dx

dt _ fo (x)

may be studied in place of the original.

P

i I f(x t)
fo(X) = _

O

Because

_t

(4)

(5)
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--_ EquaLi0-fi_(4] are called the averaged equations. If f is non-

linear, the new system will, in all likelihood, be nonlinear as

U well. But it will be autonomous and generally simpler. Refer- ....................

_ W ence i o.¢onta_ns a general description of this method and Ref. 2

is an_ap_pT=_ca_'t_i-on_to lunar orbits. Reference-2, h0wever, obtains

only a first integral and employs an angle as independent variable
-- rather than the time.

The differential equations describing the behavior of a

-- lunar satellite orbit may be given the desired form if the parame-

ters of the orbit are chosen as state variables and some simpli-

...........................fications are made. The principal assumptions which must be made

- are that the moon revolves about the earth in a fixed circular

orbit and that the moon rotates in this same orbital plane always

keeping its longest principal axis pointed toward the earth.

...._With this model, the perturbations which may be included are those

due to the triaxial moon, and a point mass earth and sun. But

_!__:::!:i!r_p!_Cii_l_n_-g-iii_hle0riginal equations wi_h the averaged set does not

............................immediately produce a system which can be solved unless the further

.......................................................a...s_.s_um.ption.of.._.negl_igibleeccentricity in the satellite orbit is

_ ii_il_de................_en_._tbis o%s_.don___e,however, the entire problem may be

__'=_" :§'_Ived by quadratures. The parameters which are used to describe

the orbit and in terms of which the solution is given are the

j._=:_ sem!_jor axis, the eccentricity, the inclination of the orbit to

__=_'_t_e-e_6-n-Kr equator, the angle of the line of nodes measured from

the line joining the earth and moon in the lunar equatorial plane,

__.:_::::i_:the angle of periselenium (the closest approach to the moon), and

finally the time of periselenium. The semimajor axis and eccen-

tricity are both found to be constant from this solution, and the

i_ dif fe rent iai equa t{ons--desc r {b{ng-_t he-re_ ining parame t-er s are

-'_ .............functions only of the inclination and line of nodes. The solu-

tions for the latter two may be given in terms of elliptic func-

::_ ! _!!!! !!::!:it_i_ s_ i 0-_ii i_hell i% i me n d-th-_s-t-he--b-ehav-{o-_-Of-e-ve-ry para me t e r ma y

....................... :be expressed-by-_6_n--_nctions or by integrals of known functions.

_ Solution and_in C0nciusi0ns

_----=-!_:i:!:i ::-_ _B_ec_us eo..__t_heso_lution applies only to near circular orbit s,

the angle and time of periselenium are not important or well-

:==_:_:_::::::.:::.:.::::H.e_in_parameters. The most interesting information can be ob-

describing the orientation of the orhit,

--- i.e , t_e inciination and line of nodes, and when the altitude of

_ ...._..__ the orbit %s be twe_ 50 and I000 km., these two quantities are
........................... ..............................................................................................................

.................. Researc_ '_5:ep-_: _: :
RE-I_0
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sin2i(c sin2y + m) - 2 cos i = k (6)

i i

w

W

r_

• L

L

cos i- (7)

where y is the line of nodes; i is the inclination; and sn(¢)

indicates the elliptic sine function. The quantity _ is a linear

function of the time, and the remaining quantities in Eqs. (6) and

(7) are constants depending upon the initial conditions and the

system parameters, i.e., the gravitational constants, earth-moon

distance, etc.

It can be shown from these expressions that cos(i) is peri-

odic with a period almost exactly half that of the moon's revolu-

tion about the earth, and the limits of its variation can be

easily calculated. For equatorial orbits, both direct and retro-

grade, the inclination is constant. As the inclination approaches

90 ° the amplitude of the variation in cos(i) increases, reach-

ing a maximum at a value of i slightly greater than 90 °, and

at this point the variation in i is less than 1°.5. Because

y is measured from a rotating reference line, namely, the earth-

moon line, it is a constantly decreasing quantity. However, its

rate of decrease may be altered by proper choice of initial con-

ditions to be slightly greater or less than the rate at which the

earth-moon line rotates. This means that measured from an iner-

tial reference, the line of nodes of a lunar satellite orbit may

be made either to advance or regress by choice of initial condi-

tions. But the rate of advance or regression is extremely small,

amounting to less than 0°.i per month for orbits with altitudes

between 50 and i000 km. The over-all picture which this ap-

proximate solution gives of near circular lunar satellite orbits

is, then, the following: The major axis and eccentricity remain

fixed while the inclination undergoes a small periodic variation

and the line of nodes experiences a very small secular rate of

change.

The question arises of the accuracy of this picture, and a

partial answer can be found in the section on Numerical Study

which follows. It will be noted from Figs. I through 5 that the

semimajor axis of the computed solutions does remain constant on

the average but that it also undergoes a periodic variation with

period one half the orbital period of the satellite. The eccen-

tricity is not constant, but from an initial value of zero it

4
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never exceeds 0.001. Figures 3 through 5 are graphs of orbits

with an initial inclination of 90 °, and they corroborate the

predicted motion in i. The magnitude of the oscillation is also

within the limits predicted by the approximate solution. However,

if Eq° (6) is solved for cos i, the resulting formula predicts

incorrectly the direction of change of i, that is, whether i

increases or decreases from its initial value. The motion of the

line of nodes is much larger in the numerical solutions than in

the analytic, but it is still small, amounting to no more than

3 °, and follows no obvious pattern. Therefore, the general

agreement of the numerical solutions with the approximate analytic

one can be said to be good, save one exception in the motion of

i. And the average solution seems to have served the purpose of

delineating the important general features of the motion of a
lunar satellite.

L

w
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NUMERICAL STUDy
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Explanation of Graphs and Tables

At the end of this report are 7 tables and 12 graphs, listed

as Figs. 2 through 13. Each figure has the same format, and each

represents one lunar satellite orbit. Eight quantities are plot-

ted. The first five are parameters of the orbit, and the remain-

ing three are radius and velocity components. The parameters are:

a the semimajor axis in kilometers

e the eccentricity

iE the inclination taken with respect to the

earth's equator

the angle of the line of nodes measured in

the earth equatorial plane from the vernal

equinox

the angle of periselenium (closest approach)

measured in the plane of the orbit from the

line of nodes. Plotted only for eccentric

orbits.

It will be noted that iE, _E, and _E are measured in an earth

equatorial system. This is the system in which the orbits were

computed, and it was chosen because it approximates an inertial

frame much more closely than a lunar equatorial system. The data

might still be presented in the latter form, but the motion of

the moon would then introduce extraneous, purely geometrical,

perturbations in the listed quantities. However, the initial con-

ditions for each orbit are given in Table I, which immediately

precedes the graphs, in terms of the lunar frame because the dif-

ferences in perturbations are more closely related to it. The

radius and velocity components are listed on the graphs as r; w,

the circumferential velocity; and u, the radial velocity. Their

units are kilometers and kilometers per second respectively. Fi-

nally, the time scale of the graphs requires explanation. To plot

each orbit for the entire 13 days for which it was computed would

be cumbersome and would obscure essential information. Therefore,

each orbit is plotted during five intervals of approximately 4-1/4

hours duration, and these intervals are evenly spaced at slightly

more than three days.

Research Dept.
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Tables 2 through 5 are tabulations of perturbations in the

radius and orbital parameters versus the initial conditions of

each orbit. As in Table i these initial conditions are given in

the selenographic coordinate system at the initial time. The

quantities listed are:

Ar the difference between maximum and minimum

radius in kilometers

Am the difference between maximum and minimum a

in kilometers

Aa
m

the difference between maximum and minimum

values of the mean value of a

e
max

maximum eccentricity

Ai E
the difference between maximum and minimum

inclination

the difference between maximum and minimum

angle of the line of nodes

Because the semimajor axis varies periodically but with a near

constant mean value, the variation in this mean value has been

tabulated along with the parameters.

Table 2 lists eight orbits with the initial time of 9 January

1969. These are from Group i of the schedule of inputs, and thus

evidence the effects of all the perturbing forces. Table 3 con-

sists of four orbits with initial conditions identical to the

first four from Table 2, but only the lunar perturbations were

included in their computation. They are from the third group of

the schedule of inputs. Tables 4 and 5 are identical to Table 2

except in initial times which are 17 December 1963 and 5 January

1960 respectively.

The remaining two tables list the position errors as a result

of changes in the values of the astrodynamical constants. Table 6

gives the initial conditions of two orbits and the two values of

the astronomical unit which were used in computing each orbit.

The positions are given after 2 months time and the differences

in kilometers computed. Table 7 lists the initial conditions of

a 45 ° lunar orbit and the two values of each lunar principal axis

which were used. The positions after one half a month are given

and the differences listed.
Research Dept.
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Tables 8 through 12, Appendix C' cover the entire schedule

of inputs, and their format is identical to that outlined above.

The Plan of Computation

The over-all purpose of the numerical portion of this con-

tract has been to survey the perturbations of a wide variety of

lunar satellite orbits. To perform this task adequately, many

different perturbations must be considered and their relative

magnitudes compared. In addition, the times at which the satel-

lite orbits are computed must be varied since the perturbations

change as the moon's orbit changes. Finally, each orbit must be

computed for a considerable length of time so that the magnitude

of the changes in the orbit will be sufficiently large, and this

implies that a numerical integration routine must be employed

which possesses an unusually high degree of accuracy.

Tables 8 through 12 contain a schedule of initial orbital

parameters which was designed to meet the requirement of a wide

variety of satellite orbits. The parameters are given with re-

spect to the selenographic coordinate .......system, that is, the inclina-

tion is measured with respect to the plane of the lunar equator,

and the line of nodes is measured in the same plane from the first

principal axis Of the moon. The plan of computation centers about

a large group of orbits with the same initial time of 9 January

1969. This first group includes orbits with different altitudes,

inclinations, and eccentricities, and all the principal perturba-

tions were included in computing each orbit. These perturbations

are due to the asphericity of the moon and the attractions of the

earth, sun, and planets.

The second and third groups of orbits from the schedule are

smaller, and are subgroups of the first. They have identical

initial conditions and starting time, but not all the perturbations

have been included in their computation. The second group includes

the perturbations of the triaxial moon and the attraction of the

earth but does not include the influences of the sun and planets.

The third includes only the perturbations due to the moon. By
examining the changes in these orbits, it is possible to compare

the magnitudes of the separate perturbations.

The fourth and fifth groups have initial times of 17 December

1963 and 5 January 1960, respectively, but their initial conditions

are otherwise identical to a subgroup of the first group of orbits.

8

\
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Figure i is a schematic diagram of the positions of earth, moon,

and sun at the three initial times. The symbol, _, indicates

the direction of the vernal equinox; ? is the ascending node of

the moon's orbit in the ecliptic and the large semicircle repre-

sents the path of the moon during the computation of each satel-

lite orbit. The moon's orbit precesses in the ecliptic with an

18-year period, and these three initial times represent three

significantly diff,erent configurations during this cycle.

A further goal of this study has been the determination of

position errors due to uncertainties in the astrodynamical con-

stants. To this end the astronomical unit and the lengths of the

principal axes of the moon have been varied between the limits of

their probable errors and the resulting orbits compared. The ini-

tial parameters of these orbits are listed as the final group in

the schedule of inputs of Appendix C.

Each orbit of the preceding groups was computed for one half

of a lunar sidereal month except for those from the final group,

some of which were computed for two months. In order to meet the

demands of numerical accuracy which this imposes, a variation of

parameters integration routine was developed for the IBM 7094

digital computer. The derivation of the equations for this rou-

tine is contained in Appendix B. The equations are applicable to

all but rectilinear orbits, and the routine makes possible the

computation of satellite motion for a considerable length of time

with small error. The table at the end of Appendix B demonstrates

this for a simple example.

The constants which have been used throughout the numerical

study have been taken from Ref. 4; however, the variations in the

astronomical unit and principal axes of the moon were calculated

from Ref. 5. The form of the moon's potential follows closely

that of Ref. 6 and the transformation equations between seleno-

centric and selenographic coordinates were taken from Ref. 3.

Conclusions

The numerical solutions which have been obtained under this

contract show clearly that there are no ironclad formulas for pre-

dicting the perturbations of a lunar satellite. However, certain

classes of orbits exhibit common features worth noting. Those

which are most easily characterized are the circular and near-

circular cases.

z
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An orbit with an initial eccentricity of zero will remain

near-circular for a considerable period. In no instance among

the orbits computed did the eccentricity rise as high as 0.001

from an initial value of zero, and many of these orbits were cal-

culated for more than 200 revolutions. Evidence that the eccen-

tricity might become appreciable after a longer period of time is

lacking. No secular changes in e are detectable. Thus, analytic

approximations to satellite motion which depend upon assumptions

of near circularity are very likely to remain valid for consider-

able periods of time.

The semimajor axis of low eccentricity orbits displays an

interesting character. In every case it has a periodic variation

with period one half that of the orbit and a mean value which is

very nearly constant. This behavior is clearly evident in Fig. 2.

For most cases the amplitude of the variation is considerably

smaller than the variation in the radius itself, but Fig. 4 shows

the opposite situation. Here, the radius experiences little change,

and this points up a well-known but interesting fact. To compute

orbits with very small eccentricity, a polar coordinate system can

be superior to a set of parameters. For moderate and high eccen-

tricities, however, the parameters have a clear advantage.

The changes in the orientation of a near circular orbit --

the inclination and line of nodes --depend on the initial condi-

tions. Orbits lying in the lunar equatorial plane, both direct

and retrograde, are extremely stable. As the initial value of the

inclination increases, however, it develops a periodic character;

the orbit nodes. As predicted by the analytic solution of the

Approximate Solution Section, the period is one half the lunar

sidereal month, and the amplitude is largest near 90 ° . And, as

Table 2 shows, the oscillation does not exceed 1°.5.

The direction in which the orbit nods, that is, whether the

inclination increases or decreases from its initial value, appears

to be governed by the initial angle of the line of nodes. In

Figs. 3 and 5 the initial value of ? is 0 ° and the inclination

increases, whereas in Fig. 4 a ? of 90 ° causes iE to decrease.

It should be pointed out that, though the plotted inclination is

determined with respect to the earth's equator, a simple trans-

formation shows that these observations are true in a selenographic

coordinate system. And note should also be made of the fact that

the periodic behavior in iE cannot truly be inferred from these

plots because the time scale is not sufficiently long. Orbits

which have been computed for many months, however, verify the pre-

dicted oscillation.
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Unfortunately, no such conclusions can be drawn about the

line of nodes. Its changes are small in the earth equatorial

system, but the direction and magnitude follow no clearly discerni-

ble pattern.

The over-all behavior of eccentric orbits is not very differ-

ent from the near-circular case, but in general, the perturbations

are larger. The semimajor axis exhibits the same periodic charac-

ter but with a varying amplitude, and the mean value changes ir-

regularly. The eccentricity shows no secular change, and it does

not vary by more than 0.001 from its initial value. But the

inclination shows less stability; near-equatorial eccentric orbits

can vary as much in inclination as polar orbits. Figures i0

through 13 are graphs of eccentric orbits, and they contain a

trace for an additional parameter, the angle of closest approach

to the moon, which for appreciable eccentricities is well-defined.

Figures 6 through 9 and Table 3 contain data on near-circular

orbits perturbed only by the moon's asphericity. It will be seen

that they do not differ noticeably from the same orbits in Figs. 2

through 5 and Table 2, which were computed with all the principal

perturbations. It can be concluded that for orbits with altitude

less than I000 km the principal perturbations are due to the

triaxial potential of the moon.

The initial conditions for the orbits listed in Tables 4 and

5 are identical to those in Table 2 except for the starting times.

The different configurations corresponding to these times are

shown in the schematic of Fig. i. It can be seen immediately from

the tables that the magnitudes of the perturbations at the differ-

ent times are quite comparable to one another, and it can also be

shown that the character of the perturbations is essentially the
same.

Tables 6 and 7 of this report list differences in position

as a result of using different values of the astronomical unit

and of the lengths of the principal axes of the moon. They

show that by far the largest errors can be expected from uncer-

tainty in the principal axes, and this is an inevitable result

of the fact that for the orbits considered, the moon's perturba-
tions are dominant.

ii
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RECOMMENDATIONS FOR FUTURE S_UDY

The previous sections show clearly that lunar orbits with

altitudes less tha_ i000 km are very stable. Earlier work of

other authors indicates, however, that the earth's influence is

a strong source of instability above 2000 km. It can be supposed

that exploration of the intermediate region would produce both

interesting and useful results.

=_

w
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TABLE i

Initial Orbital Parameters for Figs. 2 through 13

r_

!:==_

r

Initial Time = 9 January 1969, Final Time = 23 January 1969

Fig.

2

3

4

5

6

7

8

9

i0

ii

Initial Orbital Parameters in Seleno_raDhic System

a e i

1788 km

1788

1788

2038

1788 km

1788

_788

2o38

2263

2263

== ,

O.O 0°.0 0°.0 0°. 0

0.0 0°.0

- Perturbations

Earth, Moon,

Sun, and Planets
TT90°.0 O°.0

0.0 90o.0 90o.0 0O.o "

0.0 90o.0 0°.O 0°.0 "

O. 0 0°.0 0° .0 0° .0 Lunar Only

O.0 90 °. 0 0°. 0 0°. 0 "

O.0 90 °.O 90 °. 0 O°.O "

O. O 90 °.0 0° .O 0°.0 "

50.0

9o°.o

0O •0

00 .0

00.0

0O•0

.2o98

.2o98

Earth_ Moon_

Sun_ and Planets
Tr

rl

12 2263 .2098 175°.O 0°.0 0°.0 "

13 2263 .2098 90o.0 900.0 0°.0 "

z

LJ
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Initial Time = 9 January 1969

TABLE 2

Perturbations of Lunar Orbits at 9 January 1969

Final Time = 23 January 1969

Initial Orbital Elements

in Selenogr_phic System

a e i

1788 km O.0 0°.0 0° .0

1788 O.0 90 °.O 0°.0

1788 O.0 90 °.0 90 °.0

2038 O.0 90°. 0 0o. 0

2263 0. 2098 5° .0 0° .0

2263 O. 2098 90 °.0 0°.0

2263 0.2098 175 ° .0 0°.0

2263 O. 2098 90° .0 90° .0

Perturbations of the Orbit

Moon, Earth, Sun, and Planets Included

Ar Aa Aa e
m max

1. 4286 km O. 4309 km O. 0099 km 7.690x10 "4

1. 0486 1.2830 O.0072 5.601xlO -4

O.4437 I. 2802 0. 0125 4.444x10- 4

I. 0616 i. 1468 0. 0108 4.403xi0 -4

952.8952km 0.9468 0.2269 0.2117

948. o785 1.8o68 o.255o o.2098

949.9559 0.9718 o.2552 o. 21o7

948. ll02 i. 6143 O. 2678 O. 2099

Ai E

0°.o2063

i °.168

1°. 127

0°.7547

o°.09451

o°.5826

0 °.o8894

o°. 3989

0 °.1125

0°. 2097

0°. 5139

0°.07401

i °.658

o °.05195

2° .823

0°.1638

TABLE 3

Perturbations of Lunar Orbits Due to the Moon Only

Initial Time = 9 January 1969 Final Time = 23 January 1969

w

E

W

Initial Orbital Parameters

in Selenographic System

a e i T

1788 km O. 0 0 °.O 0°.0

1788 O. 0 90°.0 0 °.O

1788 O.0 900.0 90o.0

2038 O.0 90 °.0 0°.0

Perturbations of the Orbit

Lunar Perturbations Only

Ar Aa Aa e
m max

1.463 km 0.4193 km 0.0008 7.806x10 "4

i. 1623 i.264 O.0049 5.474xi0 -4

O. 5747 I.259 O. 0091 4.345xi0 -4

O.9997 i. 1051 O. 0038 4.177xi0 -4

Ai E

0°.003552

1°.167

l°.ll6

O°.7379

0°.O1076

O°.2307

0 °.5117

0°. 09893

L_

15

Research Dept.

RE-170

November 1963



TABLE 4

Perturbations of Lunar Orbits at 17 December 1963

Initial Time = 17 December 1963 Final Time = 31 December 1963

Initial Orbital Parameters

in Selenographic System
a e i o(

1788 _m o.o o°.o oo. o

1788 o. o 90 °.o 0°.o

1788 o.o 9o°. o 90°. o

2038 0.0 90° .0 0 °.0

2263 O.2098 5°.0 0°.0

2263 O. 2098 90 °.0 0°.0

2263 O. 2098 175 ° .0 0°.O

2263 O. 2098 90 ° .0 90 °.O

Perturbations of the Orbit

Moon, Earth, Sun, and Planets Included

Ar Aa Aa m ema x A iE

1.4_68 km O.4280 km O.OO285 k= 7.548xi0 "4 O°.02637

1.0324 i. 28o o. 00395 5.575 xlo-4 1 °.138

O.5150 i. 285 O.00455 4.471xi0 "4 1°.191

O.9376 i. 133 O. 00175 4.33PxlO" _ O°. 7244

948 •3 i.014 O. 2796 O. 2107 0° .8547

946.2 I.746 O. 2730 O. 2099 O° .5656

944. 7 i.005 O,3081 O.2108 0°.5047

944.0 i.630 O.2900 O.2101 O°. 5981

0°.03230

0°. 5880

o°.2049

o°. 3618

o°.213o

O°. 2763

O °.3379

0°.o6598

w

TABLE 5

Perturbations of Lunar Orbits at 5 January 1960

Initial Time = 5 January 1960 Final Time = 19 January 1960

_J_
Initial Orbital Parameters

in Selenographle System

a e i 7

1788 km 0.0 0°.0 0°. 0

1788 0. O 900 .0 0°. O

1788 O. 0 90°. 0 90 °.0

2038 O.0 90°. O 0°.0

2263 O.2098 5° .0 0°.0

2263 O.2098 90 °.0 0°.0

2263 O.2098 175 °.0 0°.0

2263 O. 2098 90 °.0 900 .O

Perturbations of the Orbit

Moon, Earth, Sun, and Planets Included

Ar Aa Aa m ema x Ai E

1.467 km 0.4429 km 0.0082 km 7.891x10 -4 0°.005192

O.9847 1.289 O.O0415 5-472x10-2 1 °.171

O.5495 i. 259 O.01815 4.795xi0 "2 1°.097

o.857o i. 145 o.0140 4.274xlO'4 o°.7412

950.2 O.8932 0.2467 O.2111 0°. 08102

O

948. i i. 822 O. 2669 O. 2099 0 .5623

942. i 0.8938 O. 2255 O. 2099 0°. 05748

944. i i.604 O.2716 o. 2101 0°.5173

0°.01361

O°.2109

0°. 5476

0°.07565

2°. 238

0°. 04206

1°. 579

0°. 2200

l_J

L_
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TABLE 6

Variation in Position Due to Variation in the Astronomical Unit

_2

- ]]

a

2738 km

Astronomical

Unit

1.4973503xi08 km

1.4946297xi08

Initial Orbital Parameters in Selenographic System

e i _ Initial Time

O.O 0°.0 O°.O 9 January 1969

Final Time

7 March 1969

Coordinates of the

Final Position

-2735.8793 km - 77.340972 km -8.37345 km

-2735.8793 - 77.263487 -8.37345

Position
Error

0.083599 km

H
rl

tj

= =

w

= =

W

a

2738 km

Initial Orbital Parameters in Selenographic System

e i T Initial Time Final Time

0.0 90°,0 0°.0 9 January 1969 7March 1969

Astronomical

Unit

1.4973503x108 km

1.4946297x108

Coordinates of the

Final Position

-2308.1829 km -778.44363 km 1248.5809 km

-2334.9129 -764.63768 1206.6309

Position

Error

51.622669 km

TABLE 7

Variation in Position Due to Variation in the Principal Axes of the Moon

Initial Orbital Parameters in Selenographlc System

a e i T Initial Time Final Time

1788 km 0.0 45°.0 0°.0 9 January 1969 23 January 1969

Principal Axes

1738.64 km 1738.21 km 1737.49 km

1738.50 1738.21 1737.49

1738.57 1738.28 1737.49

1738.57 1738.14 1737.49

1738.57 1738.21 1737.56

1738.57 1738.21 1737.42

Coordinates of

Final Position

1656.642 km 123.39423 km 66]..20554 km

1704.2964 87.833989 533.46964

1686.0255 90.365741 588.26944

1676.9499 121.12685 608.33200

1700.OITl io3.64213 544.16960

1661.5376 io8.31794 651.49351

Position

Error

140.89688 km

37.8301285

114.1094070

17
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TIME = 9 JANUARY 1969

TIME = 17 DECEMBER 1963

TIME = 5 JANUARY 1960

©

©

O EARTH

MOON

Q SUN

Fig. i

I INDICATES DIRECTION OFMOON'S ASCENDING NODE.

IN THE ECLIPTIC.

INDICATES DIRECTION OF
VERNAL EQUINOX.

INDICATES MOON'S PATH

DURING ONE IIALF MONTH

FOLLOWING THE EPOCH.

Schematic of Earth, Moon, and Sun Configurations at Three Epochs
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I

i

Initial Orbital Parameters

a e i

1788 km 0 0 ° 0 °

l[ ][ II I[ I

L66 7

.OOi

m

-.001

TIME IN HOURS

Fig, 2 Lunar Satellite Orbit Perturbed by Earth, Moon, Sun, and Planets at 9 January 1969
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Initial Orbital Parametera

a • i

1788 km 0 90 ° 90 °

'71

I1370 1 I,oi l

..ot I[ll c

¢o

1785 i

m

VVVx,/'

_ N N _

-- = N N _O

TIME IN HOURS

Fig, 3 Lunar Satellite Orbit Perturbed by Earth, Moon, Sun, and Planets at 9 January 1969
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Inltisl Orbital Parameters

a e i

1788 km 0 90° 90°

VVVV

FiR. 4 Lunar Satellite Orbit Perturbed by Earth, Moon, Sun, and Planets at 9 January 1969
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Initial 0rb_talParameters
a e i

2038 km 0 90 ° 0°

AVZ/L JN/N/NJ

TIME IN HOURS

Fig. 5 Lunar Satellite Orbit Perturbed by Earth, Moon, Sun, and Planets at 9 January'1969
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Initlal Orbital Parameters

a • £

1788 km 0 0° 0°

C_E

_o I[ ]I II I[ J

'-_6l

1.65J.

.001

- .1_1
0
0 , 2=

N

TIME IN HOURS

Fig. 6 Lunar Satellite Orbit Perturbed Only by the Trlaxlal Moon
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Initial Orbital Parameters

a • L

1788 k.m 0 90 ° 0°

Oii __

S'O]

?:1 F

71

1.6

TIME IN HOURS

Fig. 7 Lunar Satellite Orbit Perturbed _ly by the Trlaxial Moon
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Initial Orbital Parameters

a e i

1788 km 0 90 ° 90 °

°i'
89_0]

iI
...o1

1785_

1.65_

•_o,1

o _,S _= - oN =
-- OJ N l¢)

TIME IN HOURS

Fig, 8 Lunar Satellite Orbit Perturbed Only by the Triaxial Moon
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109?0

8?0]

_.o, I

2055

J:45_ J

.0011

-._ _
o

Initial Orbital Parameters

a e I

2038 km 0 90 ° 0 °

f

Jl If I

,_- =_. . _h
N

N

TIME IN HOURS

Fig. 9

.... T_

Lunar Satellite Orbit Perturbed Only by the Tria×lal Moon
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Initial Orbital Parameters

a • i ",

2263 km .2098 5 ° 0o

1
_0 ........

0"0 • r

1750 r "---

I.

0
o

/'\/

!

- N

TIME IN HOURS

Fig, i0 Eccentric Lunar Satellite Orbit Perturbed by the Earth, Moon, Sun, and Planets at 9 January 1969
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2260|

]']
201

114el

_[

O"

Tnltlal Orbital Parameters

a e I

2263 km .2098 90 ° 0o

II-- .............]I 1

360" 1

_'j _

il}i!/'t/'
z.o]

0

6
• . g_ -_ _ ,,:_'_ ®__ __ _,_

TIME IN HOURS

Fig, Ii Eccentric Lunar Satellite Orbit Perturbed by the Earth, Moon, Sun, and Planets at 9 January 1969
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TIME IN HOURS

Flg. 12 Eccentrlc Lunar Satellite Orbit Perturbed by the Earth, Moon, Sun, and Planets at 9 January 1969
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2260_

.201

i[

85

I00° l

?.1
360"1

Initial Orbital Parameters

a e i "t

2263 km .2098 90 ° 90 °

.......... -7 I ] C l r I L l

"II _ /v

1.0]_

o.
0 • -_ u, O N O_

('_ N ro

TIME IN HOURS

Fig_ 13 Eccentric Lunar Satellite Orbit Perturbed by the Earth, Moon, Sun, and Planets at 9 January 1969
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APPEND%X A

THE AVERAGE MOTION

OF A

LUNAR SATELLITE

r :

k

t

U

Let R be the disturbing function for a lunar satellite

perturbed by a point mass earth and sun and by a triaxial moon.

R may be written in a moon-centered coordinate system as

[C )-:,_/::,_::, ]R - kE r + r 2 - 2rEr cos SI - r E r cos Sl +

+ kS r + r 2 - 2rsr cos S2 - r S r cos S2 + (1)

= ,

I 3 1+ km < A/3r3) I _3a2. - i_ b2 "

[ j=l J

B =

L J

w

Expanding R in terms of r/r E

order terms, we find

and r/r S and keeping second

R -- kE r + r E 3 cos S1 - i r2/2r +

+ ks[rs I + rsl <3 cos 2 S2 - i> <r2,2r_)] +

I3 l+ km qA/3r3> I <3a; - l_b_ .

[ j--i

(2)

I
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We may drop constant terms since R is a potential function and

call the result R. Averaging R over a cycle of the lunar

satellite, assuming the earth and moon fixed, we have

-= :

="

_- z
w

w

where

<a /4)].3_E S + D2)-2 + 3e2_4D_ - E S

+ LkAl2a_'2 h 3 b (cos 2 ? + cos i sin 2 _) +

2 2
2(sin 2 _ + cos i cos ?) +

+ b 2

+ b 32(sin2 i) - (213)B4}

(3)

= .

w

:i
==-

J
:2

E
P

cos ca coS(¢p - _) + cos i sin ca sin(¢p - _)

Dp = - sin cb coS(¢p - _) + cos i cos _ sin(¢p - _)

p = E, s (4)

If the orbital element _ is replaced by the new element

= _ - CE' the elements _i' _i with fi3 = " ? will be canoni-

cal if the term DE_ 3 is added to the disturbing function. Let-

ting R = < R > + 6Ee 3 the canonical system is written

Research Dept.

RE-170

November 1963
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2 _

2---

dai _ d_ i bR
3

dt _i dt _a. 1

, i = i, 2, 3 (5)

The only restriction placed on the satellite orbit by the develop-

ment of these equations is that the ratios r/r E and r/r s be

small. However, a solution to this system is not available, and

additional approximations must be made.

An explicit time dependence occurs in the terms E S and DS

in the angle _ " ¢S" To eliminate it, an average of R is

taken with respect to the time over the period 2v/(5 E - 5S) .

2
Finally, the presence of e in Eq. (3) introduces h and h

Z

2
in a complicated fashion, therefore we assume e to be very

small and disregard all terms containing it as a factor. With

these approximations the potential function becomes

P _ + cos i sin 2 _) - 2 +

+ Qksrs3)(a2/4) {(3/2) (1 + cos 2 i) - 2}+

(6)

+ b_(sin 2 _ + cos 2 i cos 2 ?) +

2 }+ b 3 sin 2 i - (2/3) B4 +

+ 5Eh cos i .
Research Dept.
RE-170

November 1963
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=

_ =

%4

v

J

-===-

The associated differential equations are

am
-- -- 0
dt

dh
-0

dt

di_0<kEr_3_b_21_3121dt ._(a2/4) + .- • - b2)QkmA/a h 3_) sin i cos _ sin

_ =dt _kErE3_ _/a3 3(c°s2 % + cos i sin 2 T) - 2 +

+ <ksrs3 _ <v/ a /k m ._ (3/2)(1 + cos i) - 2 +

-<k2mA[" ) (3/2a 2 h3){b2(cos2 T + cos2 i sin 2 _) +

2 2 2 2

+ b2(sin 7 + cos i cos T) +

2 2 }+ b 3 sin i - (2/3) B4

(7)

(8)

(9)

(_0)

J

w

L_

_4 Research Dept.
RE-170

November 1963
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(3a 2 2
dt

S3)(3a2/4h) 2+ (ksr cos i +

F/_ 2a3/2 {i 2 2 2 2+ (kmA)(3/ h4) b (cos ? + cos i sin ?) +

(sin 2 2+ b ? + cos i cos ?) +

2 sin 2 i - (2/3)B4} ++ b 3

(11)

=

ill

z i

+ ( m h 4) (b sin 2 _ + b 2 cos T - b )cos i

dT . l{<kEr;3)(a2/4)+ (b 2 - b 2 k_A a 3/2 h3)lc°s sin2 +dt = 2)_ m / i

-{{<ksr;3)(a2/4) + (b 2 - b3)(k_A/a3/2 h3)}cos i +

Because a and h are constants, the equations for i and

can be solved separately. In more compact notation, letting

dr = 6Edt, they have the form

(12)
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di
d-_ -- c sin i cos _ sin ?

d_!=
dT - i - cos i(c sin 2 T + m)

(13)

±

_i T.

4 =
=-r

and these have the first integral

2 2
sin i(c sin _ + m) - 2 cos i = K , a constant (14)

An additional integral may be given in terms of elliptic functions.

But the representation is different depending on the magnitudes

of c and m, and these vary with the orbital altitude. How-

ever, for orbits with altitude less than i000 km and greater

than 50 km, the second integral is given without exception as

d sn2(_(T 0 - _) + _, k) +
cos i = • (15)

f sn2(_(T 0 - T) + h, k) + g

- =-

l,)

T

w

%-;

If we define auxiliary quantities rl, ..., r4 by

rl = _- i + v/ I + (c + m)(c + m - K)' ) / (c + m)

r2 = <- I + v/ i + m(m - K)' ) / m

r3= _- i -

r4= _- i -

v/ I + (c + m) (c + m -K)' > / (c + m)

v/l + m(m - K)') / m

36
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then

v

V

7"_

d - r3(r I - r2)

- - r2(r I - r3)

f - (rI - r2)

g - - (rI - r3)

k 2 - (rI - r2)(r 3 - r4) / (rI - r3)(r 2 - r4)

(17)

J( }{ }- i + (c + m)(c + m - K) i + m(m - K)

- a constant of integration

The quantities r i are the roots of the fourth order polynomial

from which the elliptic functions arise, and their order and

magnitudes determine the form of the second integral.

cases we are considering, r I _ r 2 > r3 > r4 and

rI _ cos i _ r 2.

For the

Physical Interpretations

The first integral is a useful relation for exploring the

behavior of cos i. If we solve for cos i, we find

cos i--(- i+ Jl+ (C sin 2 ) 2?+m) (c sin 2 ?+m- K) /(c sin ?+ m) (18)
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I J

_J

L_

%.;

i

where the choice of a plus sign before the radical is required

by the values of c and m. In its original form the integral

shows that for equatorial orbits

values of K show cos i = + i

K = ± 2. In Eq. (18) these

independently of ?, and thus

the inclination of an equatorial orbit, either direct or retro-

grade, does not change. This could have been conjectured from

the physical model adopted. Another quantity of interest is

(cos ima x - cos imin) for a given orbit. With the range of

values for c and m with which we are concerned

-- I

cos ima x cos imi n
c+m_ i+ (c_)(c+m-K)'- (c+m) _ i +m(m-K)'

m (c+m)
(19)

And the maximum of this function occurs when K - c + 2m giving

max{cos ima x - cos imin} = _i - _m(ic- m(c++ m) m)' ) (20)

• ?

= =

If we expand the square root and take the first two terms, this

maximum can be shown less than .023. Therefore the inclination

does not vary more than 12 ° regardless of the initial values of

i and _.

The second integral is most useful for determining the

period of the motion of the inclination. Since the period of

the elliptic sine depends on k, we must calculate it as well

38
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X.7

% i

T

M

_k2_

::

r_

as _. Two different polar orbits will be considered. For the

2

first, sin ?0 = i, so K = c + m. The quantity _ = .99988

for a i000 km altitude circular orbit with these initial condi-

tions, and k 2 - .08538 giving a period of (2_ + .1412) for

sn _ and ½(2_ + .1412) for sn 2 _. The period in seconds

for cos i is then 1.19276 x 106 sec, and this is 1.0226

times the half period of the earth's motion about the moon.

2
the second case we choose sin ?0 = 0 so K = m.

becomes 1.0706 for the same altitude orbit and

giving a period for

_n

The quantity

k2 _ .063717,

2
sn _ of ½(2_ + .1008) and a period for

cos i which is .949 times the half period of the earth's mo-

tion.

An inspection of Eq. (18) shows that the period of sin

should be twice that of cos i since only sin 2 ? appears.

Thus the initial conditions of a satellite orbit can be so

chosen that the period of _ is either slightly greater or less

than that of the earth's revolution about the moon and the period

of i will be one half that. In inertial coordinates this means

that the line of nodes of the orbit can be made either to advance

or regress on the average.

=__
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APPENDIX B

A VARIAT%ON-OF-pARAME_ERS SCHEME

FOR LUNAR ORBITS

Derivation

Many different variation-of-parameters schemes exist for

describing the motion of a vehicle in a perturbed central force

field. Some have difficulty with small divisors when the eccen-

tricity is small, and many are inapplicable to near-parabolic and

hyperbolic motion. The following note traces the derivation of

one variation-of-parameters scheme which has singularities only

for rectilinear orbits and zero inclination, and has the advantage

of simplicity and ease of computation. Since orbits with zero

inclination are often the most interesting, it should be noted

that a simple change of coordinate system, though not an elegant

device, will eliminate this singularity for any particular orbit;

and it will be shown that the form of the differential equations

is invariant under this coordinate change.

The parameters chosen are the semilatus rectum of the oscula-

ting orbit, the products of the eccentricity with the sine and

cosine of the angle of pericenter, and the three Euler angles

describing the orientation of the osculating orbit and the posi-

tion of the vehicle in the orbit. It will be observed that this

last angle is not a constant for unperturbed motion. But in

using it we avoid solving Kepler's equation or an equation like

it; and in practice the differential equation for this angle has

proven to be well-behaved.

Our development begins with the Newtonian equations in Car-

tesian coordinates:

d2_ k_
- +F

dt 2 r 3

where r = I_l and F is the perturbing acceleration. We de-

fine three mutually perpendicular unit vectors by the following
relations:

(i)
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a = r

-9
_ -9 -9
D c • a ,

-9
and express x and d-_ as

(2)

-_ --+
x=ra

dE -9 -9
- ua +wb

dt

-9
-->

The vectors a, b, and -9c are, of coursejunit vectors in the

radial, circumferential, and normal directions ; and they are

solely functions of the three Euler angles whose derivatives we

are seeking.

--> -->

Differentiating Eqs. (3) and taking F = f_ + gb + h_, we

have

(3)

d_ dry+ r d_ -9
dt - dt _ = ua + wb (4)

-->
d2_ du -+ d_ dw -9 db k -9

--°- -:(-dt 2 dt a + u _ + _ b + w dt r 2 + + gb + h_

By taking appropriate dot products of Eqs. (4) and (5), the time

derivatives of r, u, and w can be found.

(5)

dS_ -+ dr

dt • a =--=Udt

--9

d2-x a 2__ . -9 = dU+w/db k
dt 2 at \_ a_. - r

d2_ -+ ,,yd-_ --> dw

dt 2 -kdt b> + _ = g

41
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l ±

_j

The quantity

-->

db
w

dt
a is obtained from:

d_ . b /d_ -_dT = • =w
-->

-+ -_ db
d--a • b .... -- -+a
dt dt

Rewriting Eqs. (6) we have:

dr

dt

2
du k

_ + w___+ f
dt 2 r

r

dw uw
- +g

dt r

In terms of the angles defined in Fig. BI, the vectors

c can be written:

-->
a = (cos 0 cos _- sin 0 cos i sin _, cos e sin

+ sin e cos i cos _, sin 0 sin i)

b = (- sin 8 cos _- cos e cos i sin _,

- sin 0 sin _ + cos 0 cos i cos _, cos 0 sin i)

-->
c = (sin i sin _, - sin i cos _, cos i) ;

--+

and the time derivatives of _ and b are simply:

_\dt + sin e dt cos _ sin i

-->

db<d0 di= dt cos i + cos 0 _ + sin e sin i d

42
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Using Eqs. (I0), additional dot products of Eqs. (4) and (5) with

the unit vectors, Eqs. (2), yield equations for the time deriva-

tives of O, i, and 9.

J

%.;

F

F •

d._ ----) /am _

• =w

=r +cos i
J

dt 2

= <cos 0 dd_ + sin e sin i Tt_.

dt

< di %%= r sin e _ - cos 0 sin i dt_,

The equations may be solved for the indicated derivatives when-

ever sin i # 0. Thus the time variations of _, i, and

have been found at least implicitly.

The remaining three parameters whose equations we are seek-

ing are known as functions of r, u, w, and _.

2 2
p=rw/k

q = [(rw2/k) - i] cos 0 + [rwu/k] sin e

s = [(rw2/k) - i] sin 0 - [rwu/k] cos e

(ii)

(12)

LJ
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Differentiating Eqs. (12) and substituting on the right from

Eqs. (8) and (ii), we may express the time derivatives of p, q,

and s as functions of r, u, w, and the three Euler angles.

Writing r, u, and w as functions of p, q, and s will then

complete the derivation of the differential equations for our set

of parameters. However, it seems easier computationally and also

more meaningful physically to leave the equations as functions of

r, u, and w and compute the latter quantities separately. This

computation is simple to perform.

r = p/(l + q cos e + s sin e)

u = v/k/p (q sin 8 - s cos e) (13)

w = _ k/p (i + q cos 8 + s sin 0)

In these terms then the differential equations are:

= 2 -(r2w/k) g
dt

dq
dt - [(ru/k)g+ (rw/k)f+ [(rw/k)- (i/w)][h sin 0 cos i/sin i]/sin 8

+ [2(rw/k)g - (ru/k)(h sin 0 cos i/sin i)]cos e (14)

ds _ [2(rw/k)g- (ru/k)(h sin 0 cos i/sin i)]sin e
dt

- [(ru/k)g+(rw/k)f+ [(rw/k) - (1/w)][h sin 0 cos i/sin i]]x

cos e

d_

dt - (w/r) - (h sin e cos i/w sin i)

di
dt (h cos e/w)

d_
d--_= (h sin 8/w sin i)
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Coordinate Change for Low Inclinations

When i is close to 0 ° or 180 °, division by sin i re-

duces the accuracy with which these equations can be computed; and

exactly at 0 ° and 180 ° the equations are no longer valid. To
• . . _ •

avoid this dlfflculty, we redeflne a, b, c in terms of three dif-

ferent angles. This is accomplished simply by choosing a new

coordinate system in our original equation for x, Eq. (i). The

new coordinate system is obtained by a 90 ° clockwise rotation

about the x-axis of Fig. BI. Defining angles e', _', and i'

completely analogously in the new system to the definitions of

0, _, and i in the old, Fig. B2, it is apparent that the formal

derivation of the equations follows exactly as before; but now

Ii' I > 190°-il •

In the context of a numerical integration routine, a coordi-

nate change is not desirable, because it requires re-initializing

the program. However, it should be pointed out that this need

not occur frequently since Eqs. (14) are applicable without appre-

ciable loss of accuracy to an approximate range of values of i
from 6 ° to 174 °

Early A_p_lications

The equations described above have been programmed in two

dimensions, i.e., without the terms involving i and _; and

trajectories have been integrated employing the logarithmic

spiral as a check solution. Identical trajectories have been

integrated employing Eqs. (i) directly and also by the use of

another variation-of-parameters scheme based on the initial condi-

tions as parameters. Comparison of the results indicates that the

program utilizing Eqs. (14) is both quicker and more accurate

than either of the other two in this application and will follow

the exact solution for many revolutions. Table BI lists the re-

sults of the three programs applied to three different logarith-

mic spirals.

Proposed Application

Because of the success in two dimensions, the equations in

three dimensions, Eqs. (14), are being programmed, and it is

intended to apply them to lunar orbits. The potential of the
moon will have the form:
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= -_- + (A + B + C - 31)
(15)

where A, B, and C are the principal moments of inertia of the

lunar ellipsoid and I is the moment of inertia about R, the

vector from the moon's center to the point of space in question.

The moments of inertia will be calculated assuming the moon in-

creases slightly in density toward the center in concentric ellip-

soidal shells, following a formula proposed by Jeffreys (Ref. I);

and the effects of the earth, sun, and major planets will be in-

cluded. Throughout, the standardized astrodynamic constants sug-

gested by Baker, et al. (Ref. 2) will be used.

Two additional features of the program are that it will cal-

culate geocentric orbits and cislunar trajectories. For these

applications, the earth's potential includes terms for oblateness

and the pear shape. It is hoped that this program will yield in-

formation on the relative stability of lunar orbits of varying

radius and angle of inclination, and that it will prove useful as

a general purpose integration routine for trajectories in earth-

moon space.
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TABLE BI

Results of the Three Programs Applied to Three Different Logarithmic Spirals

Program

Initial Radius

Eccentricity

Final Time

Final Radius

True Radius

% Error of Radius

Cartesian Coordinates Variation of Parameters

(Initial Conditions)

6.8781449 x 103 km

.004777

1.794048 x 106 sec

4.22085 x 104 km

4.2257 x 104 km

.115%

6.8781449 x 103 km

.004777

1.7896 x 106 sec

4.223036 x 104 km

4.219181576 x 104 km

.0914%

Variation of Parameters

(p, q, s, 0,)

6.8781449 x 103 km

.004777

1.788928 x 106 sec

4.2181687 x 104 km

4.21819484 x 104 km

.00062%

Number of

Revo lut ions

Number of Inte-

gration Intervals

Approximate
Machine Time

.6 min

60

3560

5.4 rain

60

5400

.2 min

60

587

L

Initial Radius

Eccentricity

Final Time

Final Radius

True Radius

% Error of Radius

6.8781449 x 103 km

0.20

9
4.8552336 x i0 sec

9.9488194 x 107 km

9.4565866 x 107 km

5.2%

6.8781449 x 103 km

0.20

5.0720803 x 10 9 see

9.757424 x 107 km

9.7361008 x 107 km

.219%

6.8781449 x 103 km

0.20

5.133825 x 10 9 see

9.816419 x 107 km

9.8149559 x 107 km

.0149%

L_

Number of Inte-

gration intervals

Initial Radius

Eccentricity

Final Time

Final Radius

True Radius

% Error of Radius

3072

6.8781449 x 103 km

0.50

1.623468 x 10 9 sec

9.10Z2364 x 107 km

8.3917045 x 107 km

8.47%

720

6.8781449 x 103 km

0.50

1.9687052 x 109 sec

9.5314883 x 107 km

9.5427773 x 107 km

.118%

340

6.8781449 x 103 km

0.50

2.0300418 x 109 sec

9.7394317 x 107 km

9.7399705 x 107 km

.005531%

Number of Inte-

gration Intervals
2060 280 160

L
*The logarithmic spiral has a constant eccentricity; and the initial conditions of a

logarithmic trajectory are completely determined by the eccentricity and the initial
radius, assuming the initial angle is zero.
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Fig. B1 Orbital Elements for High Inclinations
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Fig. B2 Orbital Elements for Low Inclinations
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TABLE 8

Schedule of Inputs

i

= =

a i

u

Perturbing

Bodies

Moon_

Earth_

Sun, and

Planets

Moon and

Earth

Moon

Inputs for Orbits with Initial Time = 9 January 1969

Initial Orbital Elements in Selenographic System

a

1788
2038

2738

1788
2038

1788

2038

2738

1788

1788

1788

1788

1788

1813

2263

1788

1788
2038

1788

km

e

0.0

0.014

o.2o98

i

0o

45

90

135
18o

45
9o
135

5
i0

170

175

5

175

5

90
175
5
90
5
5

6O

0o 0o

9o

0 O

90

0 0

9o
9o
0 9O

9o 9o

0 00.O O

9o
9o
9o 9o o

1788

1788
2038

1788

2263

2263

o.o

0.2098

0 0

9O
9O
9O 9O
5 0
9o o

o

5O

_T
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TABLE 8 (Cont'd)

Schedule of Inputs

Inputs for Orbits with Initial Time = 17 December 1963

Perturbing Initial Orbital Elements in Selenographic System

Bodies a I e i %
1788 km O.0 0° 0° 0°

Moon, 1788 i 90

2038 90

Earth, 1788 90 , 90
2263 O.2098 5 0

Sun, and 2263 ' 90

2263 ! 175
, Planets 2263 i 90 90

Inputs for Orbits with Initial Time = 5 January 1960

Perturbing

Moon,

Earth,

Sun, and

i Planets

Bodies a

1788 km
1788

2038 i

1788 i
I 2263 i

2263

i 2263 ,
2263

Initial Orbital Elements in Selenographic System

.................................._........................ |-.-- .......................................

e i
r

0.0

1
o.2098

0 o

9o
90
90
5
9O
175

90

0o

90
0

9O

0 o
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TABLE 9

Perturbations of Lunar Orbits at 9 January 1969

Circular Orbits Perturbed by the Moon, Earth, Sun, and Planets

£ :

-L_

U

I Initial Orbital Elements

in Selenographic System

a e i T _o _

f1788 _ 0 o° o° o°

2038

2738

1788 45°

2038

1788 9o°

2o38

2738

1788 135 °

1788 18o °

1788
1788

1788

Perturbations of the Orbit

I

1.4286km 0.4309km 0.0099km 7.69ox10",4 0°.02063 0g.1125:,
i.2637 O. 3812 O. 0067 5.948x I0-_, 0o. 02372 00.1353 I

i.1641 O. 4178 O. 0414 3.8707xi0 -_ 0°. 03466 0°. 2075 i
!

1.2520 0.8454 o.0062 6.2581x10-_ 1°.oo23 lO°. 2688 1

1.1061 0.7520 0.0067 4" 9297xi°'_ 0°'6525 60"5733 1

1.0486 1.2830 0.0072 5.601xI0-_ i°.168 0°.2097

1.0616 1.1468 0.0108 4.403x10 -*, 00.7547 0o.074011

1.0587 0.9577 0.0128 3.1346xi0 -* 0°.2881 0°.080361
I

45° 9o° 0

90° 9o°

135 ° 90°

1.2572 0.8530 0.0051 6. 3867xi0-_ 1°.415 220.2998 i

....1. o3....o! 9_L_o,o !.....!. 3_3 xy7f.o1087__oo #6oi
0.4882 0.8397 0.0091 4.1320xi0-_ 4°.5727 10°.7644 1

0.4_37 1.2802 0.0125 4. _444xI0-5 1°.127 0°.5139 I0.4298 0.8535 0.0082 3.7765xi0 -4 4°.2001 I0°. _521

TABLE I0

Perturbations of Lunar Orbits at 9 January 1969

Eccentric Orbits Perturbed by the Moon, Earth, Sun, and Planets

n c

Initial Orbital Elements

in Selenographlc Systems Perturbations of the Orbit

a e i 7 _o AT Aa Aa m ema _ A_ E

1813

2263 l_

o.o14 5° o°

_oo

17o°

175 °

5° 9o°

175 ° 9o°

0.2098 5° o°

9oo

175 °

5° 9O

9oO 9o

5° 0

5° 90

o° 48.8486

48.8523

48.6803

48.6656

49.6258

50.1452

0° 952.8952 _m

948. o785

9+9.9559

953.9693

948.11o2

90 953.0346

9o 95 2.1121

Ai E

0.4469 km 0.0152 _ 0.01385 0°.1734 3°.3976

O.4587 O.0157 O.01384 0°. 3220 5°. 8085

0.4630 0.0163 0.01378 0°.5157 12°.4526

0.4529 0.0165 0.01378 00.2543 40.9934

O._457 O.0150 O.01402 1°.4963 0°. 9228

o. _34 o. OlOO o. o]_419 1° . 4964 o°. 9230

0.9468 km 0.2269 km 0.2117 0°.09451 1°.658

1.8068 0.2550 0.2098 0°.5826 0°. 05195

0.9718 O.2552 0.2107 0° .08894 2° .823

O. 9061 O. 2304 O. 2114 0°. 8222 0°. 2685

1.6143 O. 2678 O. 2099 0°. 3989 0°. 1638

O.8825 O. 2097 0.2116 0°. 0919 1°. 8733

0.9016 0.1895 0.2120 0°.8380 0°. 2776

&J
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TABLE II

Perturbations of Lunar Orbits at 9 January 1969

Circular Orbits Perturbed by the Moon and Earth

Initial Orbital Elements

in Selenosra_phl_ ....

a e i 7

1788 km 0 0° 0° 0°

1788 0 9O 0 0

2038 0 9O 0 0

1788 0 9O 90 0

Perturbations of the Orbit

AT Aa Aa m ema x Ai E

1.4662 km 0.4308 k_. 0.0098 km 7.7076xi0 -4 0°.02083

1.1874 1.2829 0.0036 5.5818x10 -4 i°.1831

1.2693 1.1468 0.0056 4.4027xi0 -4 0°.7557

0.5321 1.2798 O.OO72 4.4426x10 -4 1°.1279

0°. 1131

0°.2109

o°.07601

o°.515o

l-J

TABLE 12

Perturbations of Lunar Orbits at 9 January 1969

Circular and Eccentric Orbits Perturbed Only by the Aspherical Moon

Initial Orbital Elements

in Selenographic System Perturbations of the Orbit

a e i T m AT Aa Ai E A%

1788 km 0 0°.0 0°.0 0°.0

1788 0 90°.0 0°.0 0°.0

1788 0 9O°.0 90°.0 0°.0

2038 0 90°.0 0°.0 0°.0

O

2263 o.2o98 5 o o

2263 0.2098 90o 0 o

Aa m ema x

1.463 km 0.4193 km 0.0008 km 7.806XI0 -4

i.1623 I.264 o. 0c49 5.474xi0 -4

0.5747 1.359 o.oo91 4.3hSxlO "4

o.9997 i.105 1 o.0038 4.177xlO -4

947.7381 O. 9472 .2439 .2098

948._501 1.7777 .2638 .2098

0°.003552 o°.01076

1o.167 0°.2307

i°.116 o°.5117

0°.7379 O°.09893

00.07507 1°.8741

0°.5605 O°.O6O9O

%..,.

i
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